Modal Logics of Submaximal and Nodec Spaces

نویسندگان

  • Guram Bezhanishvili
  • Leo Esakia
  • David Gabelaia
  • Dick De Jongh
چکیده

In this note we investigate modal logics of submaximal and nodec spaces when the modal diamond is interpreted as the closure operator of a topological space. We axiomatize the modal logic of nodec spaces. We show that the modal logic of submaximal spaces is a proper extension of the modal logic of nodec spaces, axiomatize it, and prove that it coincides with the modal logics of door spaces and I-spaces. We also show that the modal logic of maximal spaces is a proper extension of the modal logic of submaximal spaces, axiomatize it, and prove that it coincides with the modal logic of perfectly disconnected spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On quasi $P$-spaces and their applications in submaximal and nodec spaces

‎A topological space is called submaximal if each of its dense subsets is open and is called nodec if each of its nowhere dense ea subsets is closed‎. ‎Here‎, ‎we study a variety of spaces some of which have already been studied in $C(X)$‎. ‎Among them are‎, ‎most importantly‎, ‎quasi $P$-spaces and pointwise quasi $P$-spaces‎. ‎We obtain some new useful topological characterizations of quasi $...

متن کامل

Some Results on Modal Axiomatization and Definability for Topological Spaces

We consider two topological interpretations of the modal diamond—as the closure operator (C-semantics) and as the derived set operator (d-semantics). We call the logics arising from these interpretations C-logics and d-logics, respectively. We axiomatize a number of subclasses of the class of nodec spaces with respect to both semantics, and characterize exactly which of these classes are modall...

متن کامل

Krull Dimension in Modal Logic

We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that Krull dimension is unable to detect. We prove that for a T1-space to have a finite modal Krull di...

متن کامل

Topological Semantics and Decidability

It is well-known that the basic modal logic of all topological spaces is S4. However, the structure of basic modal and hybrid logics of classes of spaces satisfying various separation axioms was until present unclear. We prove that modal logics of T0, T1 and T2 topological spaces coincide and are S4. We also examine basic hybrid logics of these classes and prove their decidability; as part of t...

متن کامل

Topological and Logical Explorations of Krull Dimension

Krull dimension measures the depth of the spectrum Spec(R) of a commutative ring R. Since Spec(R) is a spectral space, Krull dimension can be defined for spectral spaces. Utilizing Stone duality, it can also be defined for distributive lattices. For an arbitrary topological space, the notion of Krull dimension is less useful. Isbell [23] remedied this by introducing the concept of graduated dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004